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Frequency mixing of photorefractive and
ferroelectric gratings in lithium niobate crystals
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Holographically recorded photorefractive gratings in periodically poled lithium niobate crystals (PPLNs) are
investigated. The principal spatial frequency K of the grating is strongly suppressed. Sideband gratings with
grating vectors K±G appear. From the measurements the domain grating vector G and the duty cycle of the
domain structure can be obtained. These findings allow for fast nondestructive quality inspection of PPLN
and are of importance for any optical application combining holography and PPLN. © 2006 Optical Society
of America
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Periodically poled lithium niobate crystals (PPLNs)
are of great importance for many applications in non-
linear optics such as second-harmonic generation
(SHG) or optical parametric oscillation (OPO).1 The
interest in doped, photorefractive PPLN has grown
recently due to the fact that it enables holographic
recording but suppresses long-range index changes2,3

that are present in lithium niobate crystals without
structured domains. Most of the doped PPLN
samples studied so far were grown directly by using a
periodic modulation of the growth condition.4 They
generally have a less pronounced far order compared
with that of PPLN fabricated with the help of struc-
tured electrodes. This is relevant since for frequency
conversion the long-range order of the domain pat-
tern is of importance to ensure that the phase-
matching condition is valid throughout the crystal.
Furthermore, the abilities of frequency conversion
and holographic recording are simultaneously needed
to realize a distributed feedback OPO.5

A detailed theory of holography in PPLN has been
developed.6 It was predicted that the holographic
grating mixes with the domain grating. Such an in-
fluence of the domain grating has been shown in ho-
lographic scattering experiments.7

In this work we show that, next to the principal
grating K, sideband gratings with grating vectors
K±G ,G being the domain grating vector, appear in
standard holographic experiments. The diffraction ef-
ficiency �±1 of the sideband gratings can exceed the
diffraction efficiency �0 of the principal grating. This
is the first experimental proof, to our knowledge, that
a photorefractive grating can be recorded in PPLN
not only with bulk photovoltaic charge transport3 but
also with diffusion-driven charge separation. Fur-
thermore, we show that by measuring the normalized
efficiency �1 /�0 it is possible to deduce the duty cycle
(DC) averaged over the cross section of the recording
light beams.

The experiments are performed with copper-doped
and therefore photorefractive PPLN. To prepare the
samples, first a 150 nm copper layer is superimposed

on the −z side of a single-domain lithium niobate
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crystal wafer. The layer is then indiffused by thermal
treatment.8 The −z side is chosen to prevent a surface
domain pattern after indiffusion as described in Ref.
9. By utilizing structured electrodes and electrical
fields, periodic domain inversion is obtained.10 The
domain grating is orientated along the x axis of the
wafer, its period length is L=30 �m, and hence the
length of the grating vector is G=0.21 �m−1. The di-
mensions of a sample are x�y�z=16 mm�15 mm
�0.5 mm. By this structuring process a well-defined
long-range order of the domain structure is obtained.

The experiments are performed by using a two-
beam interference setup. Two ordinarily polarized
light beams of equal intensity, coming from an Ar+ la-
ser operating at �rec=488 nm, are incident symmetri-
cally on the x ,y face of the sample. The angle of the
beams with respect to the normal of the surface plane
inside the crystal is �rec=12.20°. So the length of
grating vector K can be calculated as follows: K
=4�no,rec�rec

−1 sin �rec=12.78 �m−1, where no,rec is the
refractive index for ordinarily polarized light at the
recording wavelength.11 The grating vector is parallel
to the x axis of the crystal. In this geometry the only
charge driving force is diffusion. The corresponding
tensor element �122 for the bulk photovoltaic current
is zero due to the crystal symmetry. This also holds
true for electro-optic tensor elements r221 and r111.

12

As a result, no isotropic diffraction is possible in this
special geometry. However, anisotropic diffraction,
which can be distinguished by a 90° change of the
light polarization angle, is possible. The correspond-
ing tensor elements r121 and r211 are nonzero. For
readout an ordinarily polarized He–Ne laser beam
with a wavelength of �read=633 nm is used. The
angle inside the crystal �read

0 for the readout light can
be calculated from the following equation:

K = sin �read
0 �2�no,read

�read
+

2�ne,read

�read
� , �1�

where no,read and ne,read are the refractive indices for
light polarized perpendicular and parallel to the z

11
axis at the readout wavelength, respectively. Figure
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1 summarizes the crystal orientation and the record-
ing and readout geometries.

At the calculated angle of Bragg incidence �read
0

=16.68° for the principal grating a diffracted beam is
observed. The corresponding selectivity curve is
shown in Fig. 2(a). The maximum diffraction effi-
ciency is �max

0 �1�10−4.
In addition to the diffracted light from the princi-

pal grating, more diffracted light is observed at dif-
ferent readout angles. In Figs. 2(b) and 2(c) the selec-
tivity curves appearing next to the selectivity curve
of the principal grating are presented. The maximum
diffraction efficiencies �max

±1 �5�10−4 of the curves
are almost equal. The angles of the observed maxima
are �Bragg

−1 =16.39° and �Bragg
+1 =16.95°. By plugging the

measured angles of Bragg incidence into Eq. (1), the
grating length of the vectors of these sideband grat-
ings can be calculated (K−1=12.57±0.01 �m−1 and
K+1=12.99±0.01 �m−1). Thus the diffracted light can
be assigned to the sideband gratings with grating
vectors K±1=K±G.

The appearance of the sideband gratings can be
understood by Fourier analysis of the grating struc-
ture. In our geometry charges are driven by diffusion
alone, which is independent of the domain orienta-
tion. Therefore the electric space-charge field E1�x�
has basically a sinusoidal shape throughout the crys-
tal. The modulation of the permittivity tensor,
�	21�x�, however, is a sinusoidal pattern interrupted
by periodic � phase shifts at the domain walls be-
cause of periodic domain inversion. As a result we
can write for the component of the permittivity ten-
sor change �	21�x��−n4r211E1�x�p�x�, where n is the
average refractive index for ordinarily and extraordi-
narily polarized light. The function p�x� is either +1
or −1, depending on the orientation of the spontane-
ous polarization of the domain because of the chang-
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Fig. 1. Schematic illustration of the crystal orientation:
(a) x axis and grating vectors G and K are parallel, (b) re-
cording light is ordinarily polarized; (c) incident beam is po-
larized ordinarily, and the readout process is purely
anisotropic.
ing sign of the electro-optic coefficient.
The Fourier analysis of such a pattern yields com-
ponents of the original holographic K grating and
resulting sideband gratings K±sG, with s being a
natural number.6 From the Kogelnik equation13 it fol-
lows that �
�	21�x�2 for small diffraction efficiencies.
From this we derive the following equation:

�±s

�0 = �2 sin�s�DC�

s��1 − 2DC��2

. �2�

Here DC is defined as DC=x+/ �x++x−�, where x+
and x− are the widths of domains with a spontaneous
polarization pointing in the +z and −z directions, re-
spectively. Thus DC=0.5 is the optimum for quasi-
phase matching. The transcendental Eq. (2) is plot-
ted in Fig. 3. The dashed lines indicate the resulting
DC for our experiment: A ratio of �±1 to �0 equal to 5
gives us a value of the duty cycle of DC=0.37±0.005.
For an ideal PPLN structure, DC=0.5, the central
peak of the primary grating disappears. Experiments
with less perfect PPLN samples yield smaller values
of the duty cycle DC. After etching of the sample,14

which is studied in this work, an optical inspection of
its surface yields an averaged value of DC
=0.41±0.02.

It is important to underline that the DC value ex-
tracted in this way is not affected by other possible
contributions to the nonlinear grating. The diffrac-
tion from all imaginable other light-induced gratings,

Fig. 2. Selectivity curves of (a) principal grating K, (b)

sideband grating K−G, (c) sideband grating K+G.
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including gratings that are due to nonlinear absorp-
tion and Kramers–Kronig index variations,15 is iso-
tropic and can easily be filtered out from the orthogo-
nally polarized signal that defines the diffraction
efficiency.

The proposed technique of PPLN inspection is com-
plimentary to those based on second-harmonic
generation16 or on photorefractive beam coupling.17,18

As distinct from all these traditional methods that
give 2D maps of domains with opposite orientation of
the spontaneous polarization, our technique allows
one to evaluate an averaged value of the duty cycle
within the area covered by the recording light beams.

The introduced technique is extremely sensitive to
deviations of the duty cycle DC from the optimum
value 0.5 (see Fig. 3). Unlike etching techniques,14

this method is nondestructive. The holographic grat-
ings can be erased easily by heating the crystal to
200°C. Undoped PPLN samples can in principle also
be examined by holography using UV or pulsed laser
light.19–21

For any application that utilizes photorefractive
gratings in PPLN, e.g., distributed feedback optical
parametric oscillators,5 it has to be considered that
the main peak is strongly suppressed. Thus, for such
applications the photorefractive grating must be in-
tentionally written with a spatial frequency larger or

Fig. 3. Determination of the DC of the domain structure:
solid curve, calculated from Eq. (2), dashed lines, measured
ratio of �1 to �0.
smaller by G than one would expect at first glance.
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